Statistical Quadrature Evolution by Inference for Continuous-Variable Quantum Key Distribution
نویسنده
چکیده
We define the statistical quadrature evolution (QE) method for multicarrier continuousvariable quantum key distribution (CVQKD). A multicarrier CVQKD protocol uses Gaussian subcarrier quantum continuous variables (CVs) for information transmission. The QE scheme utilizes the theory of mathematical statistics and statistical information processing. The QE model is based on the Gaussian quadrature inference (GQI) framework to provide a minimal error estimate of the CV state quadratures. The QE block evaluates a unique and stable estimation of the non-observable continuous input from the measurement results and through the statistical inference method yielded from the GQI framework. The QE method minimizes the overall expected error by an estimator function and provides a viable, easily implementable, and computationally efficient way to maximize the extractable information from the observed data. The QE framework can be established in an arbitrary CVQKD protocol and measurement setting and is implementable by standard low-complexity functions, which is particularly convenient for experimental CVQKD.
منابع مشابه
Gaussian Quadrature Inference for Multicarrier Continuous-Variable Quantum Key Distribution
We propose the Gaussian quadrature inference (GQI) method for multicarrier continuousvariable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The GQI framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier varia...
متن کاملSingle-quadrature continuous-variable quantum key distribution
Most continuous-variable quantum key distribution schemes are based on the Gaussian modulation of coherent states followed by continuous quadrature detection using homodyne detectors. In all previous schemes, the Gaussian modulation has been carried out in conjugate quadratures thus requiring two independent modulators for their implementations. Here, we propose and experimentally test a largel...
متن کاملDistribution Statistics and Random Matrix Formalism of Multicarrier Continuous-Variable Quantum Key Distribution
We propose a combined mathematical framework of order statistics and random matrix theory for multicarrier continuous-variable (CV) quantum key distribution (QKD). In a multicarrier CVQKD scheme, the information is granulated into Gaussian subcarrier CVs, and the physical Gaussian link is divided into Gaussian sub-channels. The sub-channels are dedicated to the conveying of the subcarrier CVs. ...
متن کاملAdaptive Quadrature Detection for Multicarrier Continuous-Variable Quantum Key Distribution
We propose the adaptive quadrature detection for multicarrier continuous-variable quantum key distribution (CVQKD). A multicarrier CVQKD scheme uses Gaussian subcarrier continuous variables for the information conveying and Gaussian sub-channels for the transmission. The proposed multicarrier detection scheme dynamically adapts to the subchannel conditions using a corresponding statistics which...
متن کاملAdaptive Multicarrier Quadrature Division Modulation for Continuous-Variable Quantum Key Distribution
In a continuous-variable quantum key distribution (CVQKD) system, the information is conveyed by coherent state carriers. The quantum continuous variables are sent through a quantum channel, where the presence of the eavesdropper adds a white Gaussian noise to the transmission. The amount of tolerable noise and loss is a crucial point in CVQKD, since it determines the overall performance of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.09247 شماره
صفحات -
تاریخ انتشار 2016